pydicom.dataset.FileDataset¶
- class pydicom.dataset.FileDataset(filename_or_obj: str | bytes | PathLike | BinaryIO | ReadableBuffer, dataset: Dataset | MutableMapping[BaseTag, DataElement | RawDataElement], preamble: bytes | None = None, file_meta: FileMetaDataset | None = None, is_implicit_VR: bool = True, is_little_endian: bool = True)[source]¶
An extension of
Dataset
to make reading and writing to file-like easier.Changed in version 3.0: Added the buffer attribute and the filename attribute has been changed to only contain the filename the dataset was read from (if any).
- preamble¶
The optional DICOM preamble prepended to the
FileDataset
, if available.
- file_meta¶
The Dataset’s file meta information as a
FileMetaDataset
, if available (None
if not present). Consists of group0x0002
elements.- Type:
FileMetaDataset | None
- filename¶
The filename associated with the
FileDataset
if read from a file or file-like, orNone
if the dataset has been read from a buffer-like object.- Type:
str | None
- buffer¶
The buffer-like object the
FileDataset
was read from, orNone
if the dataset has been read from a file or file-like.- Type:
ReadableBuffer | None
- fileobj_type¶
The type of object the
FileDataset
was read from.
- timestamp¶
The modification time of the file the
FileDataset
was read from,None
if the modification time is not available.- Type:
float | None
- __init__(filename_or_obj: str | bytes | PathLike | BinaryIO | ReadableBuffer, dataset: Dataset | MutableMapping[BaseTag, DataElement | RawDataElement], preamble: bytes | None = None, file_meta: FileMetaDataset | None = None, is_implicit_VR: bool = True, is_little_endian: bool = True) None [source]¶
Initialize a
FileDataset
read from a DICOM file.- Parameters:
filename_or_obj (str, PathLike, file-like or readable buffer) –
str
or path: the full path to the dataset filefile-like: a file-like object in “rb” mode
readable buffer: an object with
read()
,tell()
andseek()
methods such asio.BytesIO
.
dataset (Dataset or dict) – Some form of dictionary, usually a
Dataset
returned fromdcmread()
.preamble (bytes or str, optional) – The 128-byte DICOM preamble.
file_meta (FileMetaDataset, optional) – The file meta
FileMetaDataset
, such as the one returned byread_file_meta_info()
, or an emptyFileMetaDataset
if no file meta information is in the file.is_implicit_VR (bool, optional) –
True
(default) if implicit VR transfer syntax used;False
if explicit VR.is_little_endian (bool) –
True
(default) if little-endian transfer syntax used;False
if big-endian.
Methods
__init__
(filename_or_obj, dataset[, ...])Initialize a
FileDataset
read from a DICOM file.add
(data_element)Add an element to the
Dataset
.add_new
(tag, VR, value)Create a new element and add it to the
Dataset
.add_new_private
(private_creator, group, ...)Create a new private element and add it to the
Dataset
.clear
()Delete all the elements from the
Dataset
.compress
(transfer_syntax_uid[, arr, ...])Compress uncompressed pixel data and update ds in-place with the resulting encapsulated codestream.
convert_pixel_data
([handler_name])Convert pixel data to a
numpy.ndarray
internally.copy
()Return a shallow copy of the dataset.
data_element
(name)Return the element corresponding to the element keyword name.
decode
()Apply character set decoding to the elements in the
Dataset
.decompress
([handler_name, as_rgb, ...])Perform an in-place decompression of a dataset with a compressed Transfer Syntax UID.
dir
(*filters)Return an alphabetical list of element keywords in the
Dataset
.elements
()Yield the top-level elements of the
Dataset
.Create an empty
Dataset.file_meta
if none exists.formatted_lines
([element_format, ...])Iterate through the
Dataset
yielding formattedstr
for each element.from_json
(json_dataset[, bulk_data_uri_handler])Return a
Dataset
from a DICOM JSON Model object.get
(key[, default])Simulate
dict.get()
to handle element tags and keywords.get_item
(key, *[, keep_deferred])Return the raw data element if possible.
get_private_item
(group, element_offset, ...)Return the data element for the given private tag group.
group_dataset
(group)Return a
Dataset
containing only elements of a certain group.items
()Return the
Dataset
items to simulatedict.items()
.iterall
()Iterate through the
Dataset
, yielding all the elements.keys
()Return the
Dataset
keys to simulatedict.keys()
.overlay_array
(group)Return the Overlay Data in group as a
numpy.ndarray
.pixel_array_options
(*[, index, raw, ...])Set the decoding and processing options used by the
pixel_array
property.pop
(key, *args)Emulate
dict.pop()
with support for tags and keywords.popitem
()Emulate
dict.popitem()
.private_block
(group, private_creator[, create])Return the block for the given tag group and private_creator.
private_creators
(group)Return a list of private creator names in the given group.
Remove all private elements from the
Dataset
.save_as
(filename, /[, ...])Encode the current
Dataset
and write it to filename.set_original_encoding
(is_implicit_vr, ...[, ...])Set the values for the original dataset encoding.
set_pixel_data
(arr, ...[, generate_instance_uid])Use an
ndarray
to set the Pixel Data and related Image Pixel module elements.setdefault
(key[, default])Emulate
dict.setdefault()
with support for tags and keywords.to_json
([bulk_data_threshold, ...])Return a JSON representation of the
Dataset
.to_json_dict
([bulk_data_threshold, ...])Return a dictionary representation of the
Dataset
conforming to the DICOM JSON Model as described in the DICOM Standard, Part 18, Annex F.top
()Return a
str
representation of the top level elements.Return a
list
of valid names for auto-completion code.update
(d)Extend
dict.update()
to handle DICOM tags and keywords.update_raw_element
(tag, *[, vr, value])Modify the VR or value for the raw element with tag.
values
()Return the
Dataset
values to simulatedict.values()
.walk
(callback[, recursive])Iterate through the
Dataset's
elements and run callback on each.waveform_array
(index)Return an
ndarray
for the multiplex group at index in the (5400,0100) Waveform Sequence.Attributes
default_element_format
default_sequence_element_format
indent_chars
Return
True
if the dataset uses an uncompressed (native) transfer syntax,False
otherwise.Get/set the VR method used when encoding the dataset.
Get/set the endianness used when encoding the dataset.
Return
True
if the encoding to be used for writing is set and is the same as that used to originally encode theDataset
.Return the original character set encoding for a dataset decoded from a file or buffer.
Return the original encoding used for a dataset decoded from a file or buffer.
Return the pixel data as a
numpy.ndarray
.Return the original character set encoding for a decoded dataset.
Get the VR method used by the original encoding of the dataset.
Get the endianness used by the original encoding of the dataset.
- add(data_element: DataElement) None [source]¶
Add an element to the
Dataset
.Equivalent to
ds[data_element.tag] = data_element
- Parameters:
data_element (dataelem.DataElement) – The
DataElement
to add.
- add_new(tag: int | str | tuple[int, int] | BaseTag, VR: str, value: Any) None [source]¶
Create a new element and add it to the
Dataset
.- Parameters:
tag – The DICOM (group, element) tag in any form accepted by
Tag()
such as[0x0010, 0x0010]
,(0x10, 0x10)
,0x00100010
, etc.VR (str) – The 2 character DICOM value representation (see DICOM Standard, Part 5, Section 6.2).
value –
The value of the data element. One of the following:
- add_new_private(private_creator: str, group: int, element_offset: int, value: Any, vr: str | None = None) None [source]¶
Create a new private element and add it to the
Dataset
.- Parameters:
private_creator (str) – The private creator string related to the new tag.
group (int) – The group ID (0x0009 - 0xFFFF) for the private tag. Must be an odd number.
element_offset (int) – The tag offset, e.g. the lower byte of the tag element of the private tag (0x00 - 0xFF). The higher byte is defined by the location of the private creator tag.
value (Any) –
The value of the data element. One of the following:
vr (str | None) – The two-letter DICOM value representation, or
None
. If set toNone
, it is taken from the private tag dictionary.
- Raises:
ValueError – If group doesn’t belong to a private tag or private_creator is empty.
KeyError – If vr is
None
and the tag is not found in the private tag dictionary.
- compress(transfer_syntax_uid: str, arr: ndarray | None = None, encoding_plugin: str = '', encapsulate_ext: bool = False, *, generate_instance_uid: bool = True, jls_error: int | None = None, j2k_cr: list[float] | None = None, j2k_psnr: list[float] | None = None, **kwargs: Any) None [source]¶
Compress uncompressed pixel data and update ds in-place with the resulting encapsulated codestream.
Added in version 2.2.
The dataset ds must already have the following Image Pixel module elements present with correct values that correspond to the resulting compressed pixel data:
(0028,0002) Samples per Pixel
(0028,0004) Photometric Interpretation
(0028,0008) Number of Frames (if more than 1 frame will be present)
(0028,0010) Rows
(0028,0011) Columns
(0028,0100) Bits Allocated
(0028,0101) Bits Stored
(0028,0103) Pixel Representation
If Samples per Pixel is greater than 1 then the following element is also required:
(0028,0006) Planar Configuration
This method will add the file meta dataset if none is present and add or modify the following elements:
(0002,0010) Transfer Syntax UID
(7FE0,0010) Pixel Data
If the compressed pixel data is too large for encapsulation using a basic offset table then an extended offset table will also be used, in which case the following elements will also be added:
(7FE0,0001) Extended Offset Table
(7FE0,0002) Extended Offset Table Lengths
If generate_instance_uid is
True
(default) then a new (0008,0018) SOP Instance UID value will be generated.Supported Transfer Syntax UIDs
UID
Plugins
Encoding Guide
Name
Value
JPEG-LS Lossless
1.2.840.10008.1.2.4.80
pyjpegls
JPEG-LS Near Lossless
1.2.840.10008.1.2.4.81
JPEG 2000 Lossless
1.2.840.10008.1.2.4.90
pylibjpeg
JPEG 2000
1.2.840.10008.1.2.4.91
RLE Lossless
1.2.840.10008.1.2.5
pydicom, pylibjpeg, gdcm
Changed in version 3.0: Added the jls_error, j2k_cr, j2k_psnr and generate_instance_uid keyword parameters.
Examples
Compress the existing uncompressed Pixel Data in place:
>>> from pydicom import examples >>> from pydicom.uid import RLELossless >>> ds = examples.ct >>> ds.compress(RLELossless) >>> ds.save_as("ct_rle_lossless.dcm")
- Parameters:
transfer_syntax_uid (pydicom.uid.UID) – The UID of the transfer syntax to use when compressing the pixel data.
arr (numpy.ndarray, optional) – Compress the uncompressed pixel data in arr and use it to set the Pixel Data. If arr is not used then the existing Pixel Data in the dataset will be compressed instead. The
shape
,dtype
and contents of the array should match the dataset.encoding_plugin (str, optional) – Use the encoding_plugin to compress the pixel data. See the user guide for a list of plugins available for each UID and their dependencies. If not specified then all available plugins will be tried (default).
encapsulate_ext (bool, optional) – If
True
then force the addition of an extended offset table. IfFalse
(default) then an extended offset table will be added if needed for large amounts of compressed Pixel Data, otherwise just the basic offset table will be used.generate_instance_uid (bool, optional) – If
True
(default) then generate a new (0008,0018) SOP Instance UID value for the dataset usinggenerate_uid()
, otherwise keep the original value.jls_error (int, optional) – JPEG-LS Near Lossless only. The allowed absolute compression error in the pixel values.
j2k_cr (list[float], optional) – JPEG 2000 only. A list of the compression ratios to use for each quality layer. There must be at least one quality layer and the minimum allowable compression ratio is
1
. When using multiple quality layers they should be ordered in decreasing value from left to right. For example, to use 2 quality layers with 20x and 5x compression ratios then j2k_cr should be[20, 5]
. Cannot be used with j2k_psnr.j2k_psnr (list[float], optional) – JPEG 2000 only. A list of the peak signal-to-noise ratios (in dB) to use for each quality layer. There must be at least one quality layer and when using multiple quality layers they should be ordered in increasing value from left to right. For example, to use 2 quality layers with PSNR of 80 and 300 then j2k_psnr should be
[80, 300]
. Cannot be used with j2k_cr.**kwargs – Optional keyword parameters for the encoding plugin may also be present. See the encoding plugins options for more information.
- convert_pixel_data(handler_name: str = '') None [source]¶
Convert pixel data to a
numpy.ndarray
internally.Deprecated since version 3.0: This method will be removed in v4.0, use
pixel_array_options()
instead.- Parameters:
handler_name (str, optional) –
The name of the pixel handler or decoding plugin to use to decode the dataset’s pixel data. Support values are:
If using the
pixel_data_handlers
backend:'gdcm'
,'pillow'
,'jpeg_ls'
,'rle'
,'numpy'
and'pylibjpeg'
.If using the
pixels
backend see the documentation for the decoder corresponding to the dataset’s Transfer Syntax UID.
If not used (the default) then all available handlers or plugins will be tried and the data from first successful one will be used.
- Returns:
Converted pixel data is stored internally in the dataset, it can be accessed with the
pixel_array
property.- Return type:
None
- Raises:
ValueError – If handler_name is not a valid handler name.
NotImplementedError – If the given handler or any handler, if none given, is unable to decompress pixel data with the current transfer syntax
RuntimeError – If the given handler, or the handler that has been selected if none given, is not available.
Notes
If the pixel data is in a compressed image format, the data is decompressed and any related data elements are changed accordingly.
- data_element(name: str) DataElement | None [source]¶
Return the element corresponding to the element keyword name.
- Parameters:
name (str) – A DICOM element keyword.
- Returns:
For the given DICOM element keyword, return the corresponding
DataElement
if present,None
otherwise.- Return type:
dataelem.DataElement or None
- decode() None [source]¶
Apply character set decoding to the elements in the
Dataset
.See DICOM Standard, Part 5, Section 6.1.1.
- decompress(handler_name: str = '', *, as_rgb: bool = True, generate_instance_uid: bool = True, decoding_plugin: str = '', **kwargs: Any) None [source]¶
Perform an in-place decompression of a dataset with a compressed Transfer Syntax UID.
Warning
This function requires NumPy and may require the installation of additional packages to perform the actual pixel data decoding. See the pixel data decompression documentation for more information.
The dataset’s Transfer Syntax UID will be set to Explicit VR Little Endian.
The Pixel Data will be decompressed in its entirety and the Pixel Data element’s value updated with the decompressed data, padded to an even length.
The Pixel Data element’s VR will be set to OB if Bits Allocated <= 8, otherwise it will be set to OW.
The
DataElement.is_undefined_length
attribute for the Pixel Data element will be set toFalse
.Any image pixel module elements may be modified as required to match the uncompressed Pixel Data.
If generate_instance_uid is
True
(default) then a new (0008,0018) SOP Instance UID value will be generated.
Changed in version 3.0: Added the as_rgb and generate_instance_uid keyword parameters.
Deprecated since version 3.0: The handler_name parameter will be removed in v4.0, use decoding_plugin instead.
- Parameters:
handler_name (str, optional) – Deprecated and will be removed in v4.0, use decoding_plugin instead.
as_rgb (bool, optional) –
pixels
backend only. IfTrue
(default) then convert pixel data with a YCbCr photometric interpretation such as"YBR_FULL_422"
to RGB.generate_instance_uid (bool, optional) – If
True
(default) then generate a new (0008,0018) SOP Instance UID value for the dataset usinggenerate_uid()
, otherwise keep the original value.decoding_plugin (str, optional) –
The name of the decoding plugin to use when decoding compressed pixel data. If no decoding_plugin is specified (default) then all available plugins will be tried and the result from the first successful one yielded.
If using the
pixels
backend (default) then see the API documentation for the available plugins for each Transfer Syntax UID.If using the deprecated
pixel_data_handlers
backend supported plugins are:'gdcm'
,'pillow'
,'jpeg_ls'
,'rle'
,'numpy'
and'pylibjpeg'
.
kwargs (dict[str, Any], optional) –
pixels
backend only. Optional keyword parameters for the decoding plugin may also be present. See the decoding plugins options for more information.
- dir(*filters: str) list[str] [source]¶
Return an alphabetical list of element keywords in the
Dataset
.Intended mainly for use in interactive Python sessions. Only lists the element keywords in the current level of the
Dataset
(i.e. the contents of any sequence elements are ignored).
- elements() Iterator[DataElement | RawDataElement] [source]¶
Yield the top-level elements of the
Dataset
.Examples
>>> ds = Dataset() >>> for elem in ds.elements(): ... print(elem)
The elements are returned in the same way as in
Dataset.__getitem__()
.- Yields:
dataelem.DataElement or dataelem.RawDataElement – The unconverted elements sorted by increasing tag order.
- formatted_lines(element_format: str = '%(tag)s %(name)-35.35s %(VR)s: %(repval)s', sequence_element_format: str = '%(tag)s %(name)-35.35s %(VR)s: %(repval)s', indent_format: str | None = None) Iterator[str] [source]¶
Iterate through the
Dataset
yielding formattedstr
for each element.- Parameters:
element_format (str) – The string format to use for non-sequence elements. Formatting uses the attributes of
DataElement
. Default is"%(tag)s %(name)-35.35s %(VR)s: %(repval)s"
.sequence_element_format (str) – The string format to use for sequence elements. Formatting uses the attributes of
DataElement
. Default is"%(tag)s %(name)-35.35s %(VR)s: %(repval)s"
indent_format (str or None) – Placeholder for future functionality.
- Yields:
str – A string representation of an element.
- classmethod from_json(json_dataset: dict[str, Any] | str | bytes | bytearray, bulk_data_uri_handler: Callable[[str, str, str], None | str | int | float | bytes] | Callable[[str], None | str | int | float | bytes] | None = None) Dataset [source]¶
Return a
Dataset
from a DICOM JSON Model object.See the DICOM Standard, Part 18, Annex F.
- Parameters:
json_dataset (dict, str, bytes or bytearray) –
dict
,str
,bytes
orbytearray
representing a DICOM Data Set formatted based on the DICOM JSON Model.bulk_data_uri_handler (callable, optional) – Callable function that accepts either the tag, vr and “BulkDataURI” value or just the “BulkDataURI” value of the JSON representation of a data element and returns the actual value of that data element (retrieved via DICOMweb WADO-RS). If no bulk_data_uri_handler is specified (default) then the corresponding element will have an “empty” value such as
""
,b""
orNone
depending on the vr (i.e. the Value Multiplicity will be 0).
- Return type:
- get(key: str | int | tuple[int, int] | BaseTag, default: Any | None = None) Any | DataElement [source]¶
Simulate
dict.get()
to handle element tags and keywords.- Parameters:
- Returns:
value – If key is the keyword for an element in the
Dataset
then return the element’s value.dataelem.DataElement – If key is a tag for a element in the
Dataset
then return theDataElement
instance.value – If key is a class attribute then return its value.
- get_item(key: slice | TagType, *, keep_deferred: bool = False) Dataset | DataElement | RawDataElement | None [source]¶
Return the raw data element if possible.
It will be raw if the user has never accessed the value, or set their own value. Note if the data element is a deferred-read element, then it is read and converted before being returned.
- Parameters:
key – The DICOM (group, element) tag in any form accepted by
Tag()
such as[0x0010, 0x0010]
,(0x10, 0x10)
,0x00100010
, etc. May also be aslice
made up of DICOM tags.keep_deferred (bool, optional) – If
True
then when returningRawDataElement
do not perform the deferred read of the element’s value (accessing the value will returnNone
instead). DefaultFalse
.
- Returns:
The corresponding element.
- Return type:
- get_private_item(group: int, element_offset: int, private_creator: str) DataElement [source]¶
Return the data element for the given private tag group.
This is analogous to
Dataset.__getitem__()
, but only for private tags. This allows to find the private tag for the correct private creator without the need to add the tag to the private dictionary first.- Parameters:
- Returns:
The corresponding element.
- Return type:
- Raises:
ValueError – If group is not part of a private tag or private_creator is empty.
KeyError – If the private creator tag is not found in the given group. If the private tag is not found.
- group_dataset(group: int) Dataset [source]¶
Return a
Dataset
containing only elements of a certain group.
- property is_decompressed: bool¶
Return
True
if the dataset uses an uncompressed (native) transfer syntax,False
otherwise.Added in version 3.1.
- property is_implicit_VR: bool | None¶
Get/set the VR method used when encoding the dataset.
Deprecated since version 3.0:
is_implicit_VR
will be removed in v4.0, set the Transfer Syntax UID or use the implicit_vr argument withsave_as()
ordcmwrite()
instead.- Returns:
If the dataset has been created from scratch then returns
None
, otherwise returns the VR encoding method used by the decoded dataset.- Return type:
bool | None
- property is_little_endian: bool | None¶
Get/set the endianness used when encoding the dataset.
Deprecated since version 3.0:
is_little_endian
will be removed in v4.0, set the Transfer Syntax UID or use the little_endian argument withsave_as()
ordcmwrite()
instead.- Returns:
If the dataset has been created from scratch then returns
None
, otherwise returns the endianness of the encoding used by the decoded dataset.- Return type:
bool | None
- property is_original_encoding: bool¶
Return
True
if the encoding to be used for writing is set and is the same as that used to originally encode theDataset
.This includes properties related to endianness, VR handling and the (0008,0005) Specific Character Set.
- items() Set[tuple[BaseTag, DataElement | RawDataElement]] [source]¶
Return the
Dataset
items to simulatedict.items()
.- Returns:
The top-level (
BaseTag
,DataElement
) items for theDataset
.- Return type:
dict_items
- iterall() Iterator[DataElement] [source]¶
Iterate through the
Dataset
, yielding all the elements.Unlike
iter(Dataset)
, this does recurse into sequences, and so yields all elements as if dataset were “flattened”.- Yields:
dataelem.DataElement
- property original_character_set: str | MutableSequence[str]¶
Return the original character set encoding for a dataset decoded from a file or buffer.
- property original_encoding: tuple[bool, bool] | tuple[None, None]¶
Return the original encoding used for a dataset decoded from a file or buffer.
- overlay_array(group: int) ndarray [source]¶
Return the Overlay Data in group as a
numpy.ndarray
.- Parameters:
group (int) – The group number of the overlay data.
- Returns:
The (group,3000) Overlay Data converted to a
numpy.ndarray
.- Return type:
- property pixel_array: ndarray¶
Return the pixel data as a
numpy.ndarray
.Warning
This property requires NumPy and may require the installation of additional packages to perform the actual pixel data decoding. See the pixel data decompression documentation for more information.
Changed in version 3.0: The backend used for pixel data decoding has changed from the
pixel_data_handlers
module to thepixels
module. The behavior of the new backend is not backwards compatible with the old one, in particular the default color space should now be RGB when previously YCbCr data was returned.To revert to the deprecated
pixel_data_handlers
backend passuse_v2_backend=True
to thepixel_array_options()
method:>>> from pydicom import examples >>> ds = examples.ct >>> ds.pixel_array_options(use_v2_backend=True) >>> arr = ds.pixel_array
The
pixel_data_handlers
module and the use_v2_backend keyword argument will be removed in v4.0.- Returns:
The contents of the (7FE0,0008) Float Pixel Data, (7FE0,0009) Double Float Pixel Data or (7FE0,0010) Pixel Data elements converted to a
numpy.ndarray
. The array will be shaped as:(rows, columns) for single frame, single sample data
(rows, columns, samples) for single frame, multi-sample data
(frames, rows, columns) for multi-frame, single sample data
(frames, rows, columns, samples) for multi-frame, multi-sample data
When using the
pydicom.pixels
backend the decoding options used with the returned array can be customized via thepixel_array_options()
method.- Return type:
See also
pydicom.pixels.pixel_array
A function for returning the pixel data from the path to a dataset, a readable file-like containing a dataset or a
Dataset
instance. Can be used to minimize the memory required to return the pixel data when used with a path or file-like.pydicom.pixels.iter_pixels
Similar to
pydicom.pixels.pixel_array()
but returns a generator that iterates through the image frames.
- pixel_array_options(*, index: int | None = None, raw: bool = False, decoding_plugin: str = '', use_v2_backend: bool = False, **kwargs: Any) None [source]¶
Set the decoding and processing options used by the
pixel_array
property.Added in version 3.0.
Deprecated since version 3.0: The use_v2_backend keyword parameter will be removed in v4.0.
Processing
The following processing operations on the raw pixel data will always be performed:
Natively encoded bit-packed pixel data for a bits allocated of
1
will be unpacked.Natively encoded pixel data with a photometric interpretation of
"YBR_FULL_422"
will have it’s sub-sampling removed.The output array will be reshaped to the specified dimensions.
JPEG-LS or JPEG 2000 encoded data whose signedness doesn’t match the expected pixel representation will be converted to match.
With the
pydicom.pixels
backend, ifraw = False
(the default) then the following processing operation will also be performed:Pixel data with a photometric interpretation of
"YBR_FULL"
or"YBR_FULL_422"
will be converted to RGB.
Examples
Convert the Pixel Data to an array that’s a view on the original buffer:
>>> from pydicom import examples >>> ds = examples.ct >>> ds.pixel_array_options(view_only=True) >>> arr = ds.pixel_array
Use the deprecated
pixel_data_handlers
backend to convert the Pixel Data to an array:>>> from pydicom import examples >>> ds = examples.ct >>> ds.pixel_array_options(use_v2_backend=True) >>> arr = ds.pixel_array
- Parameters:
index (int | None, optional) – If
None
(default) then return an array containing all the frames in the pixel data, otherwise return one containing only the frame from the specified index, which starts at 0 for the first frame. Only available with thepixels
backend.raw (bool, optional) – If
True
then return the decoded pixel data after only minimal processing (see the processing section above). IfFalse
(default) then additional processing may be applied to convert the pixel data to it’s most commonly used form (such as converting from YCbCr to RGB). Only available with thepixels
backend.decoding_plugin (str, optional) –
The name of the decoding plugin to use when decoding compressed pixel data. If no decoding_plugin is specified (default) then all available plugins will be tried and the result from the first successful one returned. For information on the available plugins for each Transfer Syntax UID:
If using the
pixels
backend see the documentation for the decoder corresponding to the dataset’s Transfer Syntax UID.If using the
pixel_data_handlers
backend supported values are'gdcm'
,'pillow'
,'jpeg_ls'
,'rle'
,'numpy'
and'pylibjpeg'
.
use_v2_backend (bool, optional) – If
False
(default) then use thepydicom.pixels
backend to decode the pixel data, otherwise use the deprecatedpydicom.pixel_data_handlers
backend.**kwargs – Optional keyword parameters for controlling decoding with the
pixels
backend, please see the decoding options documentation for more information.
- pop(key: BaseTag | TagType, *args: Any) DataElement | RawDataElement [source]¶
Emulate
dict.pop()
with support for tags and keywords.Removes the element for key if it exists and returns it, otherwise returns a default value if given or raises
KeyError
.- Parameters:
*args (zero or one argument) – Defines the behavior if no tag exists for key: if given, it defines the return value, if not given,
KeyError
is raised
- Returns:
The element for key if it exists, or the default value if given.
- Return type:
- Raises:
KeyError – If the key is not a valid tag or keyword. If the tag does not exist and no default is given.
- popitem() tuple[BaseTag, DataElement | RawDataElement] [source]¶
Emulate
dict.popitem()
.- Return type:
tuple of (BaseTag, DataElement)
- private_block(group: int, private_creator: str, create: bool = False) PrivateBlock [source]¶
Return the block for the given tag group and private_creator.
If create is
True
and the private_creator does not exist, the private creator tag is added.Notes
We ignore the unrealistic case that no free block is available.
- Parameters:
group (int) – The group of the private tag to be found as a 32-bit
int
. Must be an odd number (e.g. a private group).private_creator (str) – The private creator string associated with the tag.
create (bool, optional) – If
True
and private_creator does not exist, a new private creator tag is added at the next free block. IfFalse
(the default) and private_creator does not exist,KeyError
is raised instead.
- Returns:
The existing or newly created private block.
- Return type:
- Raises:
ValueError – If group doesn’t belong to a private tag or private_creator is empty.
KeyError – If the private creator tag is not found in the given group and the create parameter is
False
.
- private_creators(group: int) list[str] [source]¶
Return a list of private creator names in the given group.
Examples
This can be used to check if a given private creator exists in the group of the dataset:
>>> ds = Dataset() >>> if 'My Creator' in ds.private_creators(0x0041): ... block = ds.private_block(0x0041, 'My Creator')
- Parameters:
group (int) – The private group as a 32-bit
int
. Must be an odd number.- Returns:
All private creator names for private blocks in the group.
- Return type:
- Raises:
ValueError – If group is not a private group.
- property read_encoding: str | MutableSequence[str]¶
Return the original character set encoding for a decoded dataset.
Deprecated since version 3.0:
read_encoding
will be removed in v4.0, useoriginal_character_set
instead.
- property read_implicit_vr: bool | None¶
Get the VR method used by the original encoding of the dataset.
Deprecated since version 3.0:
read_implicit_vr
will be removed in v4.0, , useoriginal_encoding
instead.- Returns:
Returns
None
if the dataset has been created from scratch, otherwise returnsTrue
if the dataset was decoded from file or buffer and used implicit VR,False
if it used explicit VR.- Return type:
bool | None
- property read_little_endian: bool | None¶
Get the endianness used by the original encoding of the dataset.
Deprecated since version 3.0:
read_little_endian
will be removed in v4.0, useoriginal_encoding
instead.- Returns:
Returns
None
if the dataset has been created from scratch, otherwise returnsTrue
if the dataset was decoded from file or buffer and used little endian encoding,False
for big endian.- Return type:
bool | None
- save_as(filename: str | PathLike | BinaryIO | WriteableBuffer, /, _Dataset__write_like_original: bool | None = None, *, implicit_vr: bool | None = None, little_endian: bool | None = None, enforce_file_format: bool = False, overwrite: bool = True, **kwargs: Any) None [source]¶
Encode the current
Dataset
and write it to filename.See the documentation for
dcmwrite()
for more detailed information.Warning
Encoding a dataset with
little_endian=False
(i.e. as big endian) is not recommended. Big endian encoding was retired from the DICOM Standard in 2006.Warning
This function cannot be used to convert a decoded dataset to an encoding that uses a different endianness, such as from big to little endian.
dcmwrite()
must be used instead, however the process is not automatic. See the documentation ofdcmwrite()
for details.Changed in version 3.0: Added implicit_vr, little_endian, enforce_file_format and overwrite keyword arguments
Deprecated since version 3.0: write_like_original will be removed in v4.0, please use enforce_file_format instead
- Parameters:
filename (str | PathLike | BinaryIO) – The path, file-like or writeable buffer to write the encoded dataset to. If using a buffer it must have
write()
,seek()
andtell()
methods.write_like_original (bool, optional) – If
True
(default) then write the dataset as-is, otherwise ensure that the dataset is written in the DICOM File Format or raise an exception is that isn’t possible. This parameter is deprecated, please use enforce_file_format instead.implicit_vr (bool, optional) – Required if the dataset has no valid public Transfer Syntax UID set in the file meta and
is_implicit_VR
ororiginal_encoding
areNone
. IfTrue
then encode using implicit VR, otherwise use explicit VR.little_endian (bool, optional) – Required if the dataset has no valid public Transfer Syntax UID set in the file meta and
is_little_endian
ororiginal_encoding
areNone
. IfTrue
(default) then use little endian byte order when encoding, otherwise use big endian (not recommended).enforce_file_format (bool, optional) –
If
True
then ensure the dataset is written in the DICOM File Format or raise an exception if that isn’t possible. IfFalse
(default) then write the dataset as-is, preserving the following - which may result in a non-conformant file:Dataset.preamble
: if the dataset has no preamble then none will be writtenDataset.file_meta
: if the dataset is missing any required File Meta Information Group elements then they will not be added or written
overwrite (bool, optional) – If
False
and filename is astr
or PathLike, then raise aFileExistsError
if a file already exists with the given filename (defaultTrue
).
See also
pydicom.filewriter.dcmwrite
Encode a
Dataset
and write it to a file or buffer.
- set_original_encoding(is_implicit_vr: bool | None, is_little_endian: bool | None, character_encoding: str | MutableSequence[str] | None = None) None [source]¶
Set the values for the original dataset encoding.
Can be used for a
Dataset
with raw data elements to enable optimized writing (e.g. without decoding the data elements).Changed in version 3.0: character_encoding is now optional
- Parameters:
is_implicit_vr (bool | None) – The the original VR encoding of the dataset,
True
for implicit VR,False
for explicit VR orNone
to reset.is_little_endian (bool | None) – Set the original endianness of the dataset,
True
for little endian,False
for big orNone
to reset.character_encoding (str | MutableSequence[str], optional) – Set the original character set encoding of the dataset. If
None
then no changes will be made to the original character set encoding.
- set_pixel_data(arr: ndarray, photometric_interpretation: str, bits_stored: int, *, generate_instance_uid: bool = True) None [source]¶
Use an
ndarray
to set the Pixel Data and related Image Pixel module elements.Added in version 3.0.
The following Image Pixel module elements values will be added, updated or removed as necessary:
(0028,0002) Samples per Pixel using a value corresponding to photometric_interpretation.
(0028,0104) Photometric Interpretation from photometric_interpretation.
(0028,0006) Planar Configuration will be added and set to
0
if Samples per Pixel is > 1, otherwise it will be removed.(0028,0008) Number of Frames from the array
shape
, however it will be removed if arr only contains a single frame.(0028,0010) Rows and (0028,0011) Columns from the array
shape
.(0028,0100) Bits Allocated from the array
dtype
.(0028,0101) Bits Stored and (0028,0102) High Bit from bits_stored.
(0028,0103) Pixel Representation from the array
dtype
.
In addition:
The Transfer Syntax UID will be set to Explicit VR Little Endian if it doesn’t already exist or uses a compressed (encapsulated) transfer syntax.
If generate_instance_uid is
True
(default) then the SOP Instance UID will be added or updated.If a
bool
array is used then the pixel data will be bit-packed usingpack_bits()
.
Changed in version 3.1: Added the ability to use a
bool
ndarray for Bits Allocated1
with bit-packing.- Parameters:
arr (numpy.ndarray) –
An array with
dtype
bool, uint8, uint16, int8, or int16. The array must be shaped as one of the following:(rows, columns) for a single frame of grayscale data.
(frames, rows, columns) for multi-frame grayscale data.
(rows, columns, samples) for a single frame of multi-sample data such as RGB.
(frames, rows, columns, samples) for multi-frame, multi-sample data.
photometric_interpretation (str) – The value to use for (0028,0004) Photometric Interpretation. Valid values are
"MONOCHROME1"
,"MONOCHROME2"
,"PALETTE COLOR"
,"RGB"
,"YBR_FULL"
,"YBR_FULL_422"
.bits_stored (int) – The value to use for (0028,0101) Bits Stored. Must be no greater than the number of bits used by the
itemsize
of arr, or 1 in the case of an array of dtype bool.generate_instance_uid (bool, optional) – If
True
(default) then add or update the (0008,0018) SOP Instance UID element with a value generated usinggenerate_uid()
.
- Raises:
NotImplementedError – If the dataset has a big-endian Transfer Syntax UID.
- setdefault(key: int | str | tuple[int, int] | BaseTag, default: Any | None = None) DataElement [source]¶
Emulate
dict.setdefault()
with support for tags and keywords.Examples
>>> ds = Dataset() >>> elem = ds.setdefault((0x0010, 0x0010), "Test") >>> elem (0010,0010) Patient's Name PN: 'Test' >>> elem.value 'Test' >>> elem = ds.setdefault('PatientSex', ... DataElement(0x00100040, 'CS', 'F')) >>> elem.value 'F'
- Parameters:
default (pydicom.dataelem.DataElement or object, optional) – The
DataElement
to use with key, or the value of theDataElement
to use with key (defaultNone
).
- Returns:
The
DataElement
for key.- Return type:
- Raises:
ValueError – If key is not convertible to a valid tag or a known element keyword.
KeyError – If
reading_validation_mode
isRAISE
and key is an unknown non-private tag.
- to_json(bulk_data_threshold: int = 1024, bulk_data_element_handler: Callable[[DataElement], str] | None = None, dump_handler: Callable[[dict[str, Any]], str] | None = None, suppress_invalid_tags: bool = False) str [source]¶
Return a JSON representation of the
Dataset
.See the DICOM Standard, Part 18, Annex F.
- Parameters:
bulk_data_threshold (int, optional) – Threshold for the length of a base64-encoded binary data element above which the element should be considered bulk data and the value provided as a URI rather than included inline (default:
1024
). Ignored if no bulk data handler is given.bulk_data_element_handler (callable, optional) – Callable function that accepts a bulk data element and returns a JSON representation of the data element (dictionary including the “vr” key and either the “InlineBinary” or the “BulkDataURI” key).
dump_handler (callable, optional) –
Callable function that accepts a
dict
and returns the serialized (dumped) JSON string (by default usesjson.dumps()
).suppress_invalid_tags (bool, optional) – Flag to specify if errors while serializing tags should be logged and the tag dropped or if the error should be bubbled up.
- Returns:
Dataset
serialized into a string based on the DICOM JSON Model.- Return type:
Examples
>>> def my_json_dumps(data): ... return json.dumps(data, indent=4, sort_keys=True) >>> ds.to_json(dump_handler=my_json_dumps)
- to_json_dict(bulk_data_threshold: int = 1024, bulk_data_element_handler: Callable[[DataElement], str] | None = None, suppress_invalid_tags: bool = False) dict[str, Any] [source]¶
Return a dictionary representation of the
Dataset
conforming to the DICOM JSON Model as described in the DICOM Standard, Part 18, Annex F.- Parameters:
bulk_data_threshold (int, optional) – Threshold for the length of a base64-encoded binary data element above which the element should be considered bulk data and the value provided as a URI rather than included inline (default:
1024
). Ignored if no bulk data handler is given.bulk_data_element_handler (callable, optional) – Callable function that accepts a bulk data element and returns a JSON representation of the data element (dictionary including the “vr” key and either the “InlineBinary” or the “BulkDataURI” key).
suppress_invalid_tags (bool, optional) – Flag to specify if errors while serializing tags should be logged and the tag dropped or if the error should be bubbled up.
- Returns:
Dataset
representation based on the DICOM JSON Model.- Return type:
- trait_names() list[str] [source]¶
Return a
list
of valid names for auto-completion code.Used in IPython, so that data element names can be found and offered for autocompletion on the IPython command line.
- update(d: Dataset | MutableMapping[BaseTag, DataElement | RawDataElement]) None [source]¶
Extend
dict.update()
to handle DICOM tags and keywords.
- update_raw_element(tag: int | str | tuple[int, int] | BaseTag, *, vr: str | None = None, value: bytes | None = None) None [source]¶
Modify the VR or value for the raw element with tag.
When a
Dataset
is created most of it’s elements are in theirRawDataElement
form, and only upon trying to access the element is it converted to aDataElement
. When this conversion fails due to non-conformance issues, this method can be used to modify the raw element data prior to conversion in order to fix any issues.Example
Change the VR for the element with tag (0029,1026) before conversion to
DataElement
.>>> from pydicom import examples >>> ds = examples.ct >>> ds.update_raw_element(0x00291026, vr="US") >>> elem = ds[0x00291026] # conversion to DataElement occurs here >>> type(elem) <class 'pydicom.dataelem.DataElement'> >>> elem.VR "US"
- Parameters:
tag (int | str | tuple[int, int] | BaseTag) – The tag for a
RawDataElement
in the dataset.vr (str, optional) – Required if value is not used, the value to use for the modified element’s VR, if not used then the existing VR will be kept.
value (bytes, optional) – Required if vr is not used, the value to use for the modified element’s raw encoded value, if not used then the existing value will be kept.
- values() ValuesView[DataElement | RawDataElement] [source]¶
Return the
Dataset
values to simulatedict.values()
.- Returns:
The
DataElements
that make up the values of theDataset
.- Return type:
dict_keys
- walk(callback: Callable[[Dataset, DataElement], None], recursive: bool = True) None [source]¶
Iterate through the
Dataset's
elements and run callback on each.Visit all elements in the
Dataset
, possibly recursing into sequences and their items. The callback function is called for eachDataElement
(including elements with a VR of ‘SQ’). Can be used to perform an operation on certain types of elements.For example,
remove_private_tags()
finds all elements with private tags and deletes them.The elements will be returned in order of increasing tag number within their current
Dataset
.- Parameters:
callback –
A callable function that takes two arguments:
a
Dataset
a
DataElement
belonging to thatDataset
recursive (bool, optional) – Flag to indicate whether to recurse into sequences (default
True
).
- waveform_array(index: int) ndarray [source]¶
Return an
ndarray
for the multiplex group at index in the (5400,0100) Waveform Sequence.Added in version 2.1.
- Parameters:
index (int) – The index of the multiplex group to return the array for.
- Returns:
The Waveform Data for the multiplex group as an
ndarray
with shape (samples, channels). If (003A,0210) Channel Sensitivity is present then the values will be in the units specified by the (003A,0211) Channel Sensitivity Units Sequence.- Return type:
See also