.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/image_processing/plot_downsize_image.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_image_processing_plot_downsize_image.py: ================================ Downsize MRI image using pydicom ================================ This example shows how to downsize an MR image from :math:`512 imes 512` to :math:`64 imes 64`. The downsizing is performed by taking the central section instead of averagin the pixels. Finally, the image is store as a dicom image. .. note:: This example requires the Numpy library to manipulate the pixel data. .. GENERATED FROM PYTHON SOURCE LINES 15-42 .. rst-class:: sphx-glr-script-out .. code-block:: none The image has 64 x 64 voxels The downsampled image has 8 x 8 voxels The information of the data set after downsampling: Dataset.file_meta ------------------------------- (0002,0000) File Meta Information Group Length UL: 190 (0002,0001) File Meta Information Version OB: b'\x00\x01' (0002,0002) Media Storage SOP Class UID UI: MR Image Storage (0002,0003) Media Storage SOP Instance UID UI: 1.3.6.1.4.1.5962.1.1.4.1.1.20040826185059.5457 (0002,0010) Transfer Syntax UID UI: Explicit VR Little Endian (0002,0012) Implementation Class UID UI: 1.3.6.1.4.1.5962.2 (0002,0013) Implementation Version Name SH: 'DCTOOL100' (0002,0016) Source Application Entity Title AE: 'CLUNIE1' ------------------------------------------------- (0008,0008) Image Type CS: ['DERIVED', 'SECONDARY', 'OTHER'] (0008,0012) Instance Creation Date DA: '20040826' (0008,0013) Instance Creation Time TM: '185434' (0008,0014) Instance Creator UID UI: 1.3.6.1.4.1.5962.3 (0008,0016) SOP Class UID UI: MR Image Storage (0008,0018) SOP Instance UID UI: 1.3.6.1.4.1.5962.1.1.4.1.1.20040826185059.5457 (0008,0020) Study Date DA: '20040826' (0008,0021) Series Date DA: '' (0008,0022) Acquisition Date DA: '' (0008,0030) Study Time TM: '185059' (0008,0031) Series Time TM: '' (0008,0032) Acquisition Time TM: '' (0008,0050) Accession Number SH: '' (0008,0060) Modality CS: 'MR' (0008,0070) Manufacturer LO: 'TOSHIBA_MEC' (0008,0080) Institution Name LO: 'TOSHIBA' (0008,0090) Referring Physician's Name PN: '' (0008,0201) Timezone Offset From UTC SH: '-0400' (0008,1010) Station Name SH: '000000000' (0008,1060) Name of Physician(s) Reading Study PN: '----' (0008,1070) Operators' Name PN: '----' (0008,1090) Manufacturer's Model Name LO: 'MRT50H1' (0010,0010) Patient's Name PN: 'CompressedSamples^MR1' (0010,0020) Patient ID LO: '4MR1' (0010,0030) Patient's Birth Date DA: '' (0010,0040) Patient's Sex CS: 'F' (0010,1020) Patient's Size DS: None (0010,1030) Patient's Weight DS: '80.0000' (0018,0010) Contrast/Bolus Agent LO: '' (0018,0020) Scanning Sequence CS: 'SE' (0018,0021) Sequence Variant CS: 'NONE' (0018,0022) Scan Options CS: '' (0018,0023) MR Acquisition Type CS: '3D' (0018,0050) Slice Thickness DS: '0.8000' (0018,0080) Repetition Time DS: '4000.0000' (0018,0081) Echo Time DS: '240.0000' (0018,0083) Number of Averages DS: '1.0000' (0018,0084) Imaging Frequency DS: '63.92433900' (0018,0085) Imaged Nucleus SH: 'H' (0018,0086) Echo Number(s) IS: '1' (0018,0091) Echo Train Length IS: None (0018,1000) Device Serial Number LO: '-0000200' (0018,1020) Software Versions LO: 'V3.51*P25' (0018,1314) Flip Angle DS: '90' (0018,5100) Patient Position CS: 'HFS' (0020,000D) Study Instance UID UI: 1.3.6.1.4.1.5962.1.2.4.20040826185059.5457 (0020,000E) Series Instance UID UI: 1.3.6.1.4.1.5962.1.3.4.1.20040826185059.5457 (0020,0010) Study ID SH: '4MR1' (0020,0011) Series Number IS: '1' (0020,0012) Acquisition Number IS: '0' (0020,0013) Instance Number IS: '1' (0020,0032) Image Position (Patient) DS: [-83.9063, -91.2000, 6.6406] (0020,0037) Image Orientation (Patient) DS: [1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 0.0000] (0020,0052) Frame of Reference UID UI: 1.3.6.1.4.1.5962.1.4.4.1.20040826185059.5457 (0020,0060) Laterality CS: '' (0020,1040) Position Reference Indicator LO: '' (0020,1041) Slice Location DS: '0.0000' (0020,4000) Image Comments LT: 'Uncompressed' (0028,0002) Samples per Pixel US: 1 (0028,0004) Photometric Interpretation CS: 'MONOCHROME2' (0028,0010) Rows US: 8 (0028,0011) Columns US: 8 (0028,0030) Pixel Spacing DS: [0.3125, 0.3125] (0028,0100) Bits Allocated US: 16 (0028,0101) Bits Stored US: 16 (0028,0102) High Bit US: 15 (0028,0103) Pixel Representation US: 1 (0028,0106) Smallest Image Pixel Value SS: 0 (0028,0107) Largest Image Pixel Value SS: 4000 (0028,1050) Window Center DS: '600' (0028,1051) Window Width DS: '1600' (7FE0,0010) Pixel Data OW: Array of 128 elements (FFFC,FFFC) Data Set Trailing Padding OB: Array of 126 elements | .. code-block:: Python # authors : Guillaume Lemaitre # license : MIT from pydicom import examples print(__doc__) # FIXME: add a full-sized MR image in the testing data ds = examples.mr # get the pixel information into a numpy array arr = ds.pixel_array print(f"The image has {arr.shape[0]} x {arr.shape[1]} voxels") arr_downsampled = arr[::8, ::8] print( f"The downsampled image has {arr_downsampled.shape[0]} x {arr_downsampled.shape[1]} voxels" ) # copy the data back to the original data set ds.PixelData = arr_downsampled.tobytes() # update the information regarding the shape of the data array ds.Rows, ds.Columns = arr_downsampled.shape # print the image information given in the dataset print("The information of the data set after downsampling: \n") print(ds) .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.005 seconds) .. _sphx_glr_download_auto_examples_image_processing_plot_downsize_image.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_downsize_image.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_downsize_image.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_downsize_image.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_