Note
Go to the end to download the full example code.
Downsize MRI image using pydicomΒΆ
This example shows how to downsize an MR image from to . The downsizing is performed by taking the central section instead of averagin the pixels. Finally, the image is store as a dicom image.
Note
This example requires the Numpy library to manipulate the pixel data.
The image has 64 x 64 voxels
The downsampled image has 8 x 8 voxels
The information of the data set after downsampling:
Dataset.file_meta -------------------------------
(0002,0000) File Meta Information Group Length UL: 190
(0002,0001) File Meta Information Version OB: b'\x00\x01'
(0002,0002) Media Storage SOP Class UID UI: MR Image Storage
(0002,0003) Media Storage SOP Instance UID UI: 1.3.6.1.4.1.5962.1.1.4.1.1.20040826185059.5457
(0002,0010) Transfer Syntax UID UI: Explicit VR Little Endian
(0002,0012) Implementation Class UID UI: 1.3.6.1.4.1.5962.2
(0002,0013) Implementation Version Name SH: 'DCTOOL100'
(0002,0016) Source Application Entity Title AE: 'CLUNIE1'
-------------------------------------------------
(0008,0008) Image Type CS: ['DERIVED', 'SECONDARY', 'OTHER']
(0008,0012) Instance Creation Date DA: '20040826'
(0008,0013) Instance Creation Time TM: '185434'
(0008,0014) Instance Creator UID UI: 1.3.6.1.4.1.5962.3
(0008,0016) SOP Class UID UI: MR Image Storage
(0008,0018) SOP Instance UID UI: 1.3.6.1.4.1.5962.1.1.4.1.1.20040826185059.5457
(0008,0020) Study Date DA: '20040826'
(0008,0021) Series Date DA: ''
(0008,0022) Acquisition Date DA: ''
(0008,0030) Study Time TM: '185059'
(0008,0031) Series Time TM: ''
(0008,0032) Acquisition Time TM: ''
(0008,0050) Accession Number SH: ''
(0008,0060) Modality CS: 'MR'
(0008,0070) Manufacturer LO: 'TOSHIBA_MEC'
(0008,0080) Institution Name LO: 'TOSHIBA'
(0008,0090) Referring Physician's Name PN: ''
(0008,0201) Timezone Offset From UTC SH: '-0400'
(0008,1010) Station Name SH: '000000000'
(0008,1060) Name of Physician(s) Reading Study PN: '----'
(0008,1070) Operators' Name PN: '----'
(0008,1090) Manufacturer's Model Name LO: 'MRT50H1'
(0010,0010) Patient's Name PN: 'CompressedSamples^MR1'
(0010,0020) Patient ID LO: '4MR1'
(0010,0030) Patient's Birth Date DA: ''
(0010,0040) Patient's Sex CS: 'F'
(0010,1020) Patient's Size DS: None
(0010,1030) Patient's Weight DS: '80.0000'
(0018,0010) Contrast/Bolus Agent LO: ''
(0018,0020) Scanning Sequence CS: 'SE'
(0018,0021) Sequence Variant CS: 'NONE'
(0018,0022) Scan Options CS: ''
(0018,0023) MR Acquisition Type CS: '3D'
(0018,0050) Slice Thickness DS: '0.8000'
(0018,0080) Repetition Time DS: '4000.0000'
(0018,0081) Echo Time DS: '240.0000'
(0018,0083) Number of Averages DS: '1.0000'
(0018,0084) Imaging Frequency DS: '63.92433900'
(0018,0085) Imaged Nucleus SH: 'H'
(0018,0086) Echo Number(s) IS: '1'
(0018,0091) Echo Train Length IS: None
(0018,1000) Device Serial Number LO: '-0000200'
(0018,1020) Software Versions LO: 'V3.51*P25'
(0018,1314) Flip Angle DS: '90'
(0018,5100) Patient Position CS: 'HFS'
(0020,000D) Study Instance UID UI: 1.3.6.1.4.1.5962.1.2.4.20040826185059.5457
(0020,000E) Series Instance UID UI: 1.3.6.1.4.1.5962.1.3.4.1.20040826185059.5457
(0020,0010) Study ID SH: '4MR1'
(0020,0011) Series Number IS: '1'
(0020,0012) Acquisition Number IS: '0'
(0020,0013) Instance Number IS: '1'
(0020,0032) Image Position (Patient) DS: [-83.9063, -91.2000, 6.6406]
(0020,0037) Image Orientation (Patient) DS: [1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 0.0000]
(0020,0052) Frame of Reference UID UI: 1.3.6.1.4.1.5962.1.4.4.1.20040826185059.5457
(0020,0060) Laterality CS: ''
(0020,1040) Position Reference Indicator LO: ''
(0020,1041) Slice Location DS: '0.0000'
(0020,4000) Image Comments LT: 'Uncompressed'
(0028,0002) Samples per Pixel US: 1
(0028,0004) Photometric Interpretation CS: 'MONOCHROME2'
(0028,0010) Rows US: 8
(0028,0011) Columns US: 8
(0028,0030) Pixel Spacing DS: [0.3125, 0.3125]
(0028,0100) Bits Allocated US: 16
(0028,0101) Bits Stored US: 16
(0028,0102) High Bit US: 15
(0028,0103) Pixel Representation US: 1
(0028,0106) Smallest Image Pixel Value SS: 0
(0028,0107) Largest Image Pixel Value SS: 4000
(0028,1050) Window Center DS: '600'
(0028,1051) Window Width DS: '1600'
(7FE0,0010) Pixel Data OW: Array of 128 elements
(FFFC,FFFC) Data Set Trailing Padding OB: Array of 126 elements
# authors : Guillaume Lemaitre <g.lemaitre58@gmail.com>
# license : MIT
from pydicom import examples
print(__doc__)
# FIXME: add a full-sized MR image in the testing data
ds = examples.mr
# get the pixel information into a numpy array
arr = ds.pixel_array
print(f"The image has {arr.shape[0]} x {arr.shape[1]} voxels")
arr_downsampled = arr[::8, ::8]
print(
f"The downsampled image has {arr_downsampled.shape[0]} x {arr_downsampled.shape[1]} voxels"
)
# copy the data back to the original data set
ds.PixelData = arr_downsampled.tobytes()
# update the information regarding the shape of the data array
ds.Rows, ds.Columns = arr_downsampled.shape
# print the image information given in the dataset
print("The information of the data set after downsampling: \n")
print(ds)
Total running time of the script: (0 minutes 0.009 seconds)