Note
Click here to download the full example code
Anonymize DICOM data¶
This example is a starting point to anonymize DICOM data.
It shows how to read data and replace tags: person names, patient id, optionally remove curves and private tags, and write the results in a new file.
# authors : Guillaume Lemaitre <g.lemaitre58@gmail.com>
# license : MIT
import tempfile
import pydicom
from pydicom.data import get_testdata_file
print(__doc__)
Anonymize a single file¶
filename = get_testdata_file('MR_small.dcm')
dataset = pydicom.dcmread(filename)
data_elements = ['PatientID',
'PatientBirthDate']
for de in data_elements:
print(dataset.data_element(de))
Out:
(0010, 0020) Patient ID LO: '4MR1'
(0010, 0030) Patient's Birth Date DA: ''
We can define a callback function to find all tags corresponding to a person names inside the dataset. We can also define a callback function to remove curves tags.
We can use the different callback function to iterate through the dataset but also some other tags such that patient ID, etc.
dataset.PatientID = "id"
dataset.walk(person_names_callback)
dataset.walk(curves_callback)
pydicom allows to remove private tags using remove_private_tags
method
dataset.remove_private_tags()
Data elements of type 3 (optional) can be easily deleted using del
or
delattr
.
if 'OtherPatientIDs' in dataset:
delattr(dataset, 'OtherPatientIDs')
if 'OtherPatientIDsSequence' in dataset:
del dataset.OtherPatientIDsSequence
For data elements of type 2, this is possible to blank it by assigning a blank string.
Finally, this is possible to store the image
data_elements = ['PatientID',
'PatientBirthDate']
for de in data_elements:
print(dataset.data_element(de))
output_filename = tempfile.NamedTemporaryFile().name
dataset.save_as(output_filename)
Out:
(0010, 0020) Patient ID LO: 'id'
(0010, 0030) Patient's Birth Date DA: '19000101'
Total running time of the script: ( 0 minutes 0.010 seconds)